$K^+ \rightarrow \pi^+ \pi^0 \gamma$: theoretical issues

Giancarlo D'Ambrosio INFN-Sezione di Napoli

Frascati 18th May 07

Old work with Gino, Gao, Portoles and New results based on work L. Cappiello and on preliminary work with Gino

- Introduction /CHPT
- Strong and weak counterterms, VMD
- $K^+ \rightarrow \pi^+ \pi^0 \gamma$ counterterm combination/kinematics and form factor
- Conclusions

Frascati 18th May 07

Vector Meson Dominance in the strong sector Ecker, Gasser, de Rafael, Pich

i	$L_i^r(M_{ ho})$	V	A	Total	Total ^{c)}
1	0.4 ± 0.3	0.6	0	0.6	0.9
2	1.4 ± 0.3	1.2	0	1.2	1.8
3	-3.5 ± 1.1	-3.6	0	-3.0	-4.9
4	-0.3 ± 0.5	0	0	0.0	0.0
5	1.4 ± 0.5	0	0	1.4	1.4
6	-0.2 ± 0.3	0	0	0.0	0.0
7	-0.4 ± 0.2	0	0	-0.3	-0.3
8	0.9 ± 0.3	0	0	0.9	0.9
9	6.9 ± 0.7	$6.9^{a)}$	0	6.9	7.3
10	-5.5 ± 0.7	-10.0	4.0	-6.0	-5.5

^{c)} uses QCD "inspired" relations

$$F_V = 2G_V = \sqrt{2}f_\pi,$$

$$F_A = f_\pi$$

$$M_A = \sqrt{2}M_V$$

$$L_1^V = \frac{L_2^V}{2} = -\frac{L_3^V}{6} = \frac{G_V^2}{8M_V^2}, \qquad L_9^V = \frac{F_V G_V}{2M_V^2}, \qquad L_{10}^{V+A} = -\frac{F_V^2}{4M_V^2} + \frac{F_A^2}{4M_A^2}$$

Theoretical motivations of success of VMD

• VMD improves the matching with QCD

Ecker, Gasser, Leutwyler, Pich, de Rafael

$$F_V^{\pi^{\pm}}(t) \approx \frac{M_{\rho}^2}{M_{\rho}^2 - t},$$

$$L_1^V = L_2^V/2 = -L_3^V/6 = L_9^V/8 = -L_{10}^{V+A}/6 = f_\pi^2/(16M_V^2) \,.$$

• Picture consolidated by in the chiral quark model χQM Georgi-Manohar;Espriu,de Rafael,Taron This is a dynamical interpretation (in CHPT) of the success of the non-relativstic quark model. In this model

$$L_i^{\chi \text{QM}} \sim L_i^{VMD}$$

- Also Large N
- Strong consolidated picture: Must work also in the WEAK sector in some way: WHICH WAY?

• Many CT's (37)

Ecker, Kambor, Wyler; G.D. Portoles

$$\mathcal{L}^{(4)}_{|\Delta S|=1} = G_8 F^2 \sum_{i=1}^{37} N_i W_i$$

- There are **tests**
- $K^+ \to \pi^+ \pi^0 \gamma$ and $K_S \to \pi^+ \pi^- \gamma$ same CT combination
- $K \to \pi l^+ l^-$, $K^+ \to \pi^+ \pi^0 \gamma$, $K^+ \to \pi^+ \gamma \gamma$ (observed or close to observation) and others probe the same CT's \Longrightarrow CHPT tests
- We need desperately some dynamical info and also some theory prejudice
- VMD must work and it is easy testable: form factor

Weak interactions in CHPT and VMD

- We know is tough: see $\Delta I = 1/2$ -rule
- Actually even in the strong sector: $V^{\mu
 u}$ better than V^{μ}
- $\mathcal{L}_{\Delta S=1}^{(4)}$: $V^{\mu\nu}$ and V^{μ} similar results (+) but important differences

Is there any chance that VMD works in CHPT weak?

- Evidence that VMD form factor describes better the photon energy distribution in $K_L \to \pi^+ \pi^- \gamma$
- size and sign of a_V in $K_L
 ightarrow \pi^0 \gamma \gamma$ were postdicted in VMD
- the large slope in $K^+ \rightarrow \pi^+ l^+ l^-$ maybe explained by the large size of VMD
- It is not a lot ... We need more infos

i	W_i	Vectors	Axials
14	$i\langle\Delta\{f^{\mu u}_+,u_\mu u_ u\} angle$	$\frac{1}{2}f_V^2 \eta_V$	
15	$i\langle \Delta u_{\mu}f_{+}^{\mu u}u_{ u} angle$	$f_V^2 oldsymbol{\eta}_V$	
16	$i\langle\Delta\{f_{-}^{\mu u},u_{\mu}u_{ u}\} angle$		$\frac{1}{2}f_A^2 \eta_A$
17	$i\langle \Delta u_{\mu}f_{-}^{\mu u}u_{ u} angle$		$f_A^2 \eta_A$
18	$\langle \Delta (f_{+\mu\nu}^2 - f_{-\mu\nu}^2) \rangle$	$-rac{1}{4}f_V^2oldsymbol\eta_V$	$rac{3}{4}f_A^2oldsymbol{\eta}_A$

η_V Weak Vector coupling

η_A Weak Axial coupling

we have used $f_V = 2 g_V$ This approx. too drastic (when V-contributions cancel)

$$K^+
ightarrow \pi^+ \pi^0 \gamma$$

 $N_{14} - N_{15} - N_{16} - N_{17}$
 $K^+
ightarrow \pi^+ \gamma \gamma$
 $N_{14} - N_{15} - 2N_{18}$
size and sign from Axials
 $f_V \stackrel{?}{=} 2 g_V$

G. D'Ambrosio

Sviluppi teorici e fenomenologici nei deadimenti dei K

Counterterm combination	Processes	VMD weak coupling
$N_{14}^r - N_{15}^r$	$K^+ o \pi^+ \gamma^*$	
	$K^+ o \pi^+ \pi^0 \gamma^*$	$-0.020 \eta_V + 0.004 \eta_A$
$2N_{14}^r + N_{15}^r$	$K_S o \pi^0 \gamma^*$	$0.08\eta_V$
$N_{14} - N_{15} - 2N_{18}$	$K^+ o \pi^+ \gamma \gamma$	
	$K^+ o \pi^+ \pi^0 \gamma \gamma$	$-0.01\eta_A$
$N_{14} - N_{15} - N_{16} - N_{17}$	$K^+ o \pi^+ \pi^0 \gamma$	
	$K_S o \pi^+ \pi^- \gamma$	$-0.010\eta_A$
$N_{14}^r - N_{15}^r - 3(N_{16}^r - N_{17})$	$K_L o \pi^+ \pi^- \gamma^*$	$-0.004 \eta_V + 0.018 \eta_A$
$N_{14}^r - N_{15}^r - 3(N_{16}^r + N_{17})$	$K_S o \pi^+ \pi^- \gamma^*$	$0.05\eta_V-0.04\eta_A$
$N_{14}^r + 2N_{15}^r - 3(N_{16}^r - N_{17})$	$K^+ o \pi^+ \pi^0 \gamma^*$	$0.12\eta_V+0.01\eta_A$
$N_{29} + N_{31}$	$K_L o \pi^+ \pi^- \gamma$	$0.005\eta_V+0.003\eta_A$
$3N_{29} - N_{30}$	$K^+ o \pi^+ \pi^0 \gamma$	$-0.005 \eta_V - 0.003 \eta_A$

Observation hidden by other effects: different analysis maybe useful (Kaon charge radius) NA48 has a good chance

$$K(p_K) \to \pi(p_1)\pi(p_2)\gamma(q)$$

• Lorentz + gauge invariance \Rightarrow Electric (E) and Magnetic(M) amplitude

$$A(K \to \pi \pi \gamma) = \mathbf{F}^{\mu\nu} \left[\mathbf{E} \partial_{\mu} K \partial_{\nu} \pi + \mathbf{M} \varepsilon_{\mu\nu\rho\sigma} \partial^{\rho} K \partial^{\sigma} \pi \right]$$

• Unpolarizated photons

$$\frac{d^{2}\Gamma}{dz_{1}dz_{2}} \sim |E|^{2} + |M|^{2}$$
$$|E^{2}| = |E_{IB}|^{2} + 2Re(E_{IB}^{*}E_{D}) + |E_{D}|^{2}$$
$$\downarrow$$
Low Theorem $\Rightarrow E_{IB} \sim \frac{1}{E_{\gamma}^{*}} + c$
$$E_{D}, M \text{ chiral tests}$$

We need FIGHT DE/IB $\sim 10^{-3}$

	IB	DE_{exp}	
$K_S \to \pi^+ \pi^- \gamma$	10^{-3}	$< 9 \cdot 10^{-5}$	E1
$K^+ o \pi^+ \pi^0 \gamma$	10^{-4} $(\Delta I = \frac{3}{2})$	$(0.44 \pm 0.07) 10^{-5}$ PDG	M1, E1
$K_L o \pi^+ \pi^- \gamma$	$\frac{10^{-5}}{(\mathrm{CPV})}$	$(2.92 \pm 0.07) 10^{-5}$ KTeVnew	M1,VMD

CPV is only from IB K_L (also measured in $K_L \to \pi^+ \pi^- e^+ e^-$) BUT IB suppressed in K^+ and K_L .

CP asymmetry

- In the asymmetry in the slope, $\frac{\partial^2 \Gamma^{\pm}}{\partial T_c^* \partial W^2}$ select a favourable kin. region (large W^2)
- This asymm., Ω , in extensions of SM $\sim \mathcal{O}(10^{-4})$ Colangelo et al.

•
$$\mathsf{SM} \le \mathcal{O}(10^{-5})$$
 Paver et al.

- Assuming the expts. are almost seeing the CP conserving E1 Statistics seems tough but previous limit (Smith eta I. 76) weak
- Similar analysis for CPV in K_L : but time interf. required

 $K_L o \pi^+ \pi^- \gamma$

 $\ensuremath{\text{M1}}$ transtions clearly measured KTeV (00) with large slope

form factor measured

$$\mathcal{F} = 1 + rac{\mathbf{a}}{1 - rac{m_k^2}{m_
ho^2} + rac{2m_K E_\gamma^*}{m_
ho^2}}$$
 E_γ^* photon energy

KTeV:

•
$$a = -1.243 \pm 0.057$$

• linear slope quadratic slope
$$\mathcal{F}$$

 χ^2/DOF 43.2/27 37.6/26 38.8/27

 $\Rightarrow \mathsf{Large VMD:} \ \rho\mathsf{-}\mathsf{pole}$

$$p^4$$
 CT's to $K_L
ightarrow \pi^+\pi^-\gamma$

$$a_1 = 8 \pi^2 N_{28}$$
 , $a_2 = 32 \pi^2 N_{29}$, $a_3 = \frac{16}{3} \pi^2 N_{30}$, $a_4 = 16 \pi^2 N_{31}$

$$\mathcal{L}_{\Delta S=1}^{(4)} \qquad \stackrel{K_L \to \pi^+ \pi^- \gamma}{\Longrightarrow} \qquad M1 \sim a_2 + 2a_4 + h.o.$$

Large VMD in the a_i . Not automatic in all spin-1 formulations

[G.D. Portoles, G.D. Gao, Cappiello G.D]

Consistent with M1 in $K^+ \rightarrow \pi^+ \pi^0 \gamma$ and predictive for spectrum (work for NA48/2)

$$K^+ \to \pi^+ \pi^0 \gamma$$

$$A(K \to \pi \pi \gamma) = \mathbf{F}^{\mu\nu} \left[\mathbf{E} \partial_{\mu} K \partial_{\nu} \pi + \mathbf{M} \varepsilon_{\mu\nu\rho\sigma} \partial^{\rho} K \partial^{\sigma} \pi \right]$$

E1 and M1 are measured with Dalitz plot

$$\frac{\partial^2 \Gamma}{\partial T_c^* \partial W^2} = \frac{\partial^2 \Gamma_{IB}}{\partial T_c^* \partial W^2} \left[1 + \frac{m_{\pi^+}^2}{m_K} 2Re\left(\frac{E1}{eA}\right) W^2 + \frac{m_{\pi^+}^4}{m_K^2} \left(\left|\frac{E1}{eA}\right|^2 + \left|\frac{M1}{eA}\right|^2 \right) W^4 \right]$$
$$W^2 = (q \cdot p_K)(q \cdot p_+) / (m_{\pi}^2 m_K^2)$$

$$A = A(K^+ \to \pi^+ \pi^0)$$

$K^+ \rightarrow \pi^+ \pi^0 \gamma \ W - T_c$ Dalitz plot

Integrating over T_c deviations from IB measured

$$K^+ \to \pi^+ \pi^0 \gamma$$

• E1 dominated by CT \Rightarrow E787 constrains models ($k_f < 1$) NA48/2 \Longrightarrow $k_f = -0.4$

 $M1 \sim (-2 + 3a_2 - 6a_3)$

Exp. \sim -2.5 Possible scenario a_i small?

 $\stackrel{\rm new$ $expts.}{\Longrightarrow} -1$

Cheng Bijnens, Ecker, Pich

We have instead insisted, motivated by $K_L \rightarrow \pi^+ \pi^- \gamma$ on the VMD \Longrightarrow form factor

[•] to establish VMD

Is this the origin of the interference?

Subtracting a constant DE amplitude from a DE amplitude with form factor $\eta_V = 0.5$ (slashed line) and $\eta_V = 1.4$ (dotted line)

Different kin. variables

$$\frac{\partial^2 \Gamma}{\partial T_c^* \partial E_\gamma^*} = \frac{\partial^2 \Gamma_{IB}}{\partial T_c^* \partial E_\gamma^*} \left[1 + 2Re\left(\frac{E_{DE}}{e\mathcal{A}}\right) \left(\frac{m_K}{2} - E_0 - \frac{\delta\mu^2}{2m_K}\right) \frac{E_\gamma^*}{m_K} + \left(\left|\frac{E_{DE}}{e\mathcal{A}}\right|^2 + \left|\frac{M_{DE}}{e\mathcal{A}}\right|^2\right) \left(\frac{m_K}{2} - E_0 - \frac{\delta\mu^2}{2m_K}\right)^2 \frac{E_\gamma^{*2}}{m_K^2} \right],$$

where E_0 is the π^0 -energy,

$$\delta \mu^2 = m_{\pi^+}^2 - m_{\pi^0}^2$$

Christ Dalitz plot

Correlations

REFS.	$B(K^+ \to \pi^+ \pi^0 \gamma)_{\rm DE}$
	$T_c^* \in [55, 90]$
BNL E787	$(4.7\pm0.9)\times10^{-6}$
PDG 06	$(4.4 \pm 0.7) \times 10^{-6}$
KEK-E470	$(3.8 \pm 0.8 \pm 0.7) \times 10^{-6}$
NA48/2	$(2.22 \pm 0.13 \pm 0.05) \times 10^{-6}$
NA48/2 analysis	$T_c^* \in [0, 80] \mathrm{MeV}$
$B(K^+ \to \pi^+ \pi^0 \gamma)^{\rm INT}$	$(-4.91 \pm 2.00) \times 10^{-6}$
$B(K^+ \to \pi^+ \pi^0 \gamma)^{\rm DE}$	$(6.16 \pm 0.79) \times 10^{-6}$

Conclusions

- We need all the available info to understand the chiral dynamics N_i 's
- Negative interf. for $K^+ \to \pi^+ \pi^0 \gamma$ not excluded
- Picture to be consolidated

WZW-VMD plot

